skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rabeler, Richard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseThe Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole‐genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. MethodsWe constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. ResultsThe ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4–56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants inColobanthusandEremogone, along with other functional annotations. ConclusionsGene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep‐time evolutionary patterns in plants. 
    more » « less
  2. Abstract PremisePteridophytes—vascular land plants that disperse by spores—are a powerful system for studying plant evolution, particularly with respect to the impact of abiotic factors on evolutionary trajectories through deep time. However, our ability to use pteridophytes to investigate such questions—or to capitalize on the ecological and conservation‐related applications of the group—has been impaired by the relative isolation of the neo‐ and paleobotanical research communities and by the absence of large‐scale biodiversity data sources. MethodsHere we present the Pteridophyte Collections Consortium (PCC), an interdisciplinary community uniting neo‐ and paleobotanists, and the associated PteridoPortal, a publicly accessible online portal that serves over three million pteridophyte records, including herbarium specimens, paleontological museum specimens, and iNaturalist observations. We demonstrate the utility of the PteridoPortal through discussion of three example PteridoPortal‐enabled research projects. ResultsThe data within the PteridoPortal are global in scope and are queryable in a flexible manner. The PteridoPortal contains a taxonomic thesaurus (a digital version of a Linnaean classification) that includes both extant and extinct pteridophytes in a common phylogenetic framework. The PteridoPortal allows applications such as greatly accelerated classic floristics, entirely new “next‐generation” floristic approaches, and the study of environmentally mediated evolution of functional morphology across deep time. DiscussionThe PCC and PteridoPortal provide a comprehensive resource enabling novel research into plant evolution, ecology, and conservation across deep time, facilitating rapid floristic analyses and other biodiversity‐related investigations, and providing new opportunities for education and community engagement. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  3. Thanks to substantial support for biodiversity data mobilization in recent decades, billions of occurrence records are openly available, documenting life on Earth and enabling timely research, awareness raising, and policy-making. Initiatives across local to global scales have been separately funded to serve different, yet often overlapping audiences of data users, and have developed a variety of platforms and infrastructures to meet the needs of these audiences. The independent progress of biodiversity data providers has led to innovations as well as challenges for the community at large as we move towards connecting and linking a diversity of information from disparate sources as Digital Extended Specimens (DES). Recognizing a need for deeper and more frequent opportunities for communication and collaboration across the globe, an ad-hoc group of representatives of various international, national, and regional organizations have been meeting virtually since 2020 to provide a forum for updates, announcements, and shared progress. This group is provisionally named International Partners for the Digital Extended Specimen (IPDES), and is guided by these four concepts: Biodiversity, Connection, Knowledge and Agency. Participants in IPDES include representatives of the Global Biodiversity Information Facility (GBIF), Integrated Digitized Biocollections (iDigBio), American Institute of Biological Sciences (AIBS), Biodiversity Collections Network (BCoN), Natural Science Collections Alliance (NSCA), Distributed System of Scientific Collections (DiSSCo), Atlas of Living Australia (ALA), Biodiversity Information Standards (TDWG), Society for the Preservation of Natural History Collections (SPNHC), National Specimen Information Infrastructure of China (NSII), and South African National Biodiversity Institute (SANBI), as well as individuals involved with biodiversity informatics initiatives, natural science collections, museums, herbaria, and universities. Our global partners group strives to increase representation from around the globe as we aim to enable research that contributes to novel discoveries and addresses the societal challenges leading to the biodiversity crisis. Our overarching mission is to expand on the community-driven successes to connect biodiversity data and knowledge through coordination of a globally integrated network of stakeholders to enable an extensible technical and social infrastructure of data, tools, and working practices in support of our vision. The main work of our group thus far includes publishing a paper on the Digital Extended Specimen (Hardisty et al. 2022), organizing and hosting an array of activities at conferences, and asynchronous online work and forum-based exchanges. We aim to advance discussion on topics of broad interest to our community such as social and technical capacity building, broadening participation, expanding social and data networks, improving data models and building a backbone for the DES, and identifying international funding solutions. This presentation will highlight some of these activities and detail progress towards a roadmap for the development of the human network and technical infrastructure necessary to support the DES. It provides an opportunity for feedback from and engagement by stakeholder communities such as TDWG and other initiatives with a focus on data standards and biodiversity informatics, as we solidify our plans for the future in support of integrated and interconnected biodiversity data and credit for those doing the work. 
    more » « less
  4. Abstract The early twenty-first century has witnessed massive expansions in availability and accessibility of digital data in virtually all domains of the biodiversity sciences. Led by an array of asynchronous digitization activities spanning ecological, environmental, climatological, and biological collections data, these initiatives have resulted in a plethora of mostly disconnected and siloed data, leaving to researchers the tedious and time-consuming manual task of finding and connecting them in usable ways, integrating them into coherent data sets, and making them interoperable. The focus to date has been on elevating analog and physical records to digital replicas in local databases prior to elevating them to ever-growing aggregations of essentially disconnected discipline-specific information. In the present article, we propose a new interconnected network of digital objects on the Internet—the Digital Extended Specimen (DES) network—that transcends existing aggregator technology, augments the DES with third-party data through machine algorithms, and provides a platform for more efficient research and robust interdisciplinary discovery. 
    more » « less
  5. Abstract Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5–7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade. 
    more » « less